The Testing Evidence for Using Ivermectin for Pancreatic Cancer in Dogs
Executive Summary
- This article covers the evidence I could find for Ivermectin as a treatment for Pancreatic Cancer in Dogs.
Introduction
This article provides an overview covering the evidence for Ivermectin versus Pancreatic Cancer in Dogs.
In many articles on this site, such as the article How Ivermectin Is Useful for Treating Cancer we covered the evidence for the benefits of Ivermectin for cancer. However, the topic of which specific cancers Ivermectin has been proven effective is a constant source of questions.
There are a lot of quotes in this article, but I have a short one for each cancer type. The article uses the term “IVM” to mean Ivermectin.
Cancer Type #15: Pancreatic Cancer in Dogs
The following quote is from the article Ivermectin and gemcitabine combination treatment induces apoptosis of pancreatic cancer cells via mitochondrial dysfunction.
Pancreatic Cancer in Dogs is an aggressive cancer characterized by high mortality and poor prognosis, with a survival rate of less than 5 years in advanced stages.
Ivermectin, an antiparasitic drug, exerts antitumor effects in various cancer types. This is the first study to evaluate the anticancer effects of the combination of ivermectin and gemcitabine in Pancreatic Cancer in Dogs.
We found that the ivermectin-gemcitabine combination treatment suppressed Pancreatic Cancer in Dogs more effectively than gemcitabine alone treatment.
The ivermectin-gemcitabine combination inhibited cell proliferation via G1 arrest of the cell cycle, as evidenced by the downregulation of cyclin D1 expression and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT-3) signaling pathway. Ivermectin-gemcitabine increased cell apoptosis by inducing mitochondrial dysfunction via the overproduction of reactive oxygen species and decreased the mitochondrial membrane potential.
This combination treatment also decreased the oxygen consumption rate and inhibited mitophagy, which is important for cancer cell death. Moreover, in vivo experiments confirmed that the ivermectin-gemcitabine group had significantly suppressed tumor growth compared to the gemcitabine alone group. These results indicate that ivermectin exerts synergistic effects with gemcitabine, preventing Pancreatic Cancer in Dogs progression, and could be a potential antitumor drug for the treatment of Pancreatic Cancer in Dogs.
Testing Evidence for Ivermectin
The following quotes are from the article Ivermectin, a potential anticancer drug derived from an antiparasitic drug.
Impact #1: Inhibiting Proliferation of Tumor Cells
Recently, ivermectin has been reported to inhibit the proliferation of several tumor cells by regulating multiple signaling pathways.
The Ivermectin blocking of PAK1 proteins, aka activated kinase, is a reason for this.
The instrumentality of PAK1 in cancer growth is explained in the following quotation from the article Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations.
In human ovarian cancer and NF2 tumor cell lines, high-dose ivermectin inactivates protein kinase PAK1 and blocks PAK1-dependent growth.
PAK proteins are essential for cytoskeletal reorganization and nuclear signaling, PAK1 being implicated in tumor genesis while inhibiting PAK1 signals induces tumor cell apoptosis (cell death).
PAK1 is essential for the growth of more than 70% of all human cancers, including breast, prostate, pancreatic, colon, gastric, lung, cervical and thyroid cancers, as well as hepatoma, glioma, melanoma, multiple myeloma and for neurofibromatosis tumors.
PAK1 becomes hyperactive in cancer cells for reasons that are not yet understood.
Ivermectin can be viewed as a PAK1 restrictor or modulator (I say modulator as PAK1 is present in normal healthy cells, but an overage of PAK is a prime cause of cancer.)
This means that Ivermectin interferes with a precursor to cancer. This modulating influence on PAK is another reason Ivermectin is effective against many types of cancer.
PAK1 is implicated in multiple cancers if found in the quotation from the article Effect of P21-activated kinase 1 (PAK-1) inhibition on cancer cell growth, migration, and invasion.
Previous studies showed that PAK-1 mediated the growth of prostate PC-3 cell tumor xenografts in athymic nude mice as well as the transforming growth factor-β (TGFβ)-induced prostate cancer cell epithelial-mesenchymal transition (EMT). These studies suggested that PAK-1 plays a major role in prostate cancer progression and is a potential target for prostate cancer therapy. PAK-1 has also been suggested to be involved in the early stages of breast cancer and may partially participate in the mechanisms mediating the transformation of mammary epithelial cells into mesenchymal malignant cells.
Hyperactive PAK1 and Cancer
This is explained in the quotation from P21 Activated Kinase-1 (Pak1) Promotes Prostate Tumor Growth and Microinvasion via Inhibition of Transforming Growth Factor β Expression and Enhanced Matrix Metalloproteinase 9 Secretion.
Even though Pak1 has been identified in normal prostatic epithelial cells and cancer cells, its specific role in the development of prostate cancer remains unclear. We report here that highly invasive prostate cancer cells express significantly higher levels of Pak1 protein compared with non-invasive prostate cancer cells. Furthermore, prostate tumor tissues and prostate cancer metastasized to lungs showed a higher expression of Pak1 compared with normal tissues.
This appears to match the experience with other cancers, but they have not performed sufficient studies to say for sure.